
| Ansv | wers – Paper 1                                                                                                                                                                                                                                                                                                                                                  |        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1    |                                                                                                                                                                                                                                                                                                                                                                 |        |
|      | (a) $\bullet \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + \begin{pmatrix} 8 \\ -6 \\ 0 \end{pmatrix} \bullet = \begin{pmatrix} 8 \\ -5 \\ -5 \end{pmatrix}$ (b $\bullet  \mathbf{r}  = 5, \bullet \begin{pmatrix} 4/5 \\ -3/5 \\ 0 \end{pmatrix} \text{or } \frac{1}{5} \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix}$ | 2<br>2 |
| 2    | • Midpoint is (5,1) • $M_{AB} = 4/6 = 2/3$ • $M_{alt} = -3/2$                                                                                                                                                                                                                                                                                                   |        |
|      | •Straight line is $y-1 = -\frac{3}{2}(x-5) \to 2y = -3x + 17$                                                                                                                                                                                                                                                                                                   | 4      |
| 3    | • $f'(x) = \cos x + 3$ • $\cos\left(\frac{\pi}{3}\right) + 3$ • $3\frac{1}{2}$                                                                                                                                                                                                                                                                                  | 3      |
| 4    | • $2^3 + k(2^2) - 4(2) - 12 = 0$ • k = 3                                                                                                                                                                                                                                                                                                                        | 2      |
| 5    | • <i>m</i> = tan150 = -tan30 • $-\frac{1}{\sqrt{3}}$                                                                                                                                                                                                                                                                                                            | 2      |
| 6    | • $4x^2 + 8x - 5$ • $4(x+1)^2$ • $4(x+1)^2 - 9$                                                                                                                                                                                                                                                                                                                 | 3      |
| 7    | (a) • $g^{-1}(x) = \frac{x-3}{2}$                                                                                                                                                                                                                                                                                                                               | 1      |
|      | (b) • $f(2x+3) = \frac{1}{2x+3-4}$ • $\frac{1}{2x+3-4} = \frac{1}{2x-1}$                                                                                                                                                                                                                                                                                        | 2      |
|      | (c) • $x \neq \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                      | 1      |
| 8    | (a) •RAT • $\frac{\sqrt{100-2}}{10} = \frac{\sqrt{98}}{10} = \frac{7\sqrt{2}}{10}$                                                                                                                                                                                                                                                                              | 2      |
|      | (b) $\bullet \sin(x+45) = \sin x \cos 45 + \cos x \sin 45$ .                                                                                                                                                                                                                                                                                                    |        |
|      | $\bullet \frac{7\sqrt{2}}{10} \times \frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{10} \times \frac{1}{\sqrt{2}} \qquad \bullet \frac{7}{10} \times \frac{1}{1} + \frac{1}{10} \times \frac{1}{1} = \frac{8}{10}$                                                                                                                                                        | 3      |
| 9    | (a) • $f'(x) = 0$<br>• $x = 2, x = -2$<br>• $3x^2 - 12 = 0$<br>• $3(x + 2)(x - 2) = 0$<br>• nature table or $f''(x)$                                                                                                                                                                                                                                            |        |
|      | • maximum at (-2,18), minimum at (2, -14)                                                                                                                                                                                                                                                                                                                       | 7      |
|      | • function is increasing when $-2 < x$ and $x > 2$                                                                                                                                                                                                                                                                                                              | 2      |
| 10   | • $x^{2} + (-2x + 10)^{2} + 2x - 4(-2x + 10) - 15 = 0$                                                                                                                                                                                                                                                                                                          | 4      |
|      | • $5x^2 - 30x + 45 = 0$ • $5(x - 3)(x - 3) = 0$                                                                                                                                                                                                                                                                                                                 |        |
|      | <ul> <li>one point of contact at x = 3 proves tangency</li> </ul>                                                                                                                                                                                                                                                                                               |        |
|      | $\underline{Or} \bullet b^2 - 4ac = 0$ • two real and equal roots proves tangency                                                                                                                                                                                                                                                                               |        |

| 11 | • $f(x) = \int 2x - 3dx$ • $f(x) = x^2 + 3x + C$                                                              |   |
|----|---------------------------------------------------------------------------------------------------------------|---|
|    | • y-intercept for both is (0,4)<br>• $f(x) = x^2 + 3x + 4$                                                    | 4 |
| 12 | (a) • $\frac{1}{2}(8-x^3)^{-1/2}$ • $\frac{1}{2}(8-x^3)^{-1/2} \times -3x^2$ • $-\frac{3x^2}{2(8-x^3)^{1/2}}$ | 3 |
|    | (b) • make a connection with part (a) $(8-x^3)^{1/2}$                                                         | 2 |
|    | • full answer $-\frac{2}{3}(8-x^3)^{1/2} + C$                                                                 |   |
| 13 | • $a \bullet (b + c) = a \bullet b + a \bullet c$                                                             |   |
|    | <ul> <li>a • b = 2x2xcos60</li> <li>a • (b + c) = 2 + -2 = 0</li> <li>a • (b + c) = 2 + -2 = 0</li> </ul>     | 5 |
|    | <ul> <li>vectors are perpendicular when scalar product is zero,</li> </ul>                                    |   |
|    | hence vector <b>a</b> is perpendicular to vector <b>b + c</b>                                                 |   |
| 14 | (a) • $\log_x y^3 = \log_x y^2 + 2$ ,                                                                         |   |
|    | • $\log_x y^3 - \log_x y^2 = 2 \rightarrow \log_x \frac{y^3}{y^2} = 2$                                        |   |
|    | • $\log_x \frac{y^3}{y^2} = 2 \rightarrow \log_x y = 2$                                                       | 4 |
|    | • $\log_x y = 2 \rightarrow y = x^2$                                                                          |   |
|    | (b) • $y=(y-2)^2 \rightarrow y=y^2-4y+4 \rightarrow 0=y^2-5y+4$                                               |   |
|    | (b) • $y=(y-2)$ → $y=y + y + 4$ → $y=4$ and $y=1$<br>• $0=y^2-5y+4$ → $0=(y-4)(y-1)$ → $y=4$ and $y=1$        | 2 |
|    |                                                                                                               |   |

| Ans | wers – Paper 2                                                                                                                                                                                                                                                                                                       |        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1   | (a) • $\overrightarrow{RS} = \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix}, \ \overrightarrow{ST} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$                                                                                                                                                                           |        |
|     | • $\overrightarrow{RS} = 3\overrightarrow{ST}$ , vector $\overrightarrow{RS}$ is a multiple of $\overrightarrow{ST}$ so these vectors are parallel<br>• vectors are parallel <u>and</u> share a common point S so R, S and T are collinear                                                                           | 3      |
|     | (b) • S divides RT in the ratio 3:1<br>$\vec{SE} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \vec{ST} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$                                                                                                                                                                             | 1      |
|     | (c) $\bullet \overrightarrow{SF} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix},  \overrightarrow{ST} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}  \bullet   SF  = \sqrt{50}  \bullet   ST  = \sqrt{6}$<br>$\bullet  \overrightarrow{SF} \bullet \overrightarrow{ST} = 3 \times 1 + 4 \times 1 + -5 \times 2 = -3$     | 5      |
|     | • angle FST = $\cos^{-1}\left(\frac{-3}{\sqrt{300}}\right) = 100^{\circ}$                                                                                                                                                                                                                                            |        |
|     | Answer must reference $\vec{SF} \bullet \vec{ST}$ and not $a \bullet b$                                                                                                                                                                                                                                              |        |
| 2   | Two sequences are defined by these recurrence relations                                                                                                                                                                                                                                                              |        |
|     | $U_{n+1} = 3U_n - 0.4, U_0 = 1$ and $V_{n+1} = 0.3V_n + 4, V_0 = 1$                                                                                                                                                                                                                                                  |        |
|     | (a) • Vn has a limit as $-1 < 0.3 < 1$                                                                                                                                                                                                                                                                               |        |
|     | (b) • limit = $\frac{4}{1-0.3}$ • limit is $\frac{40}{7}$ - only the <b>exact</b> value gets the mark                                                                                                                                                                                                                | 1<br>2 |
|     | (c) • $U_6 = 583.4$ so $U_7 = 1749.8$                                                                                                                                                                                                                                                                                | 1      |
| 3   | (a) •Midpoint of QR is (2,4) • $M_{median} = 2$ •Equation is $y = 2x$                                                                                                                                                                                                                                                | 3      |
|     | <ul> <li>(b) ●Larger circle has a centre of (5,10)</li> <li>●Larger circle has a radius of √20</li> <li>●Points on line y = 2x are (6,12), (7,14), (8,16) etc</li> <li>●Distance between (5,10) and (7,14) is √20 hence C is (7,14)</li> <li>Or 7<sup>2</sup> + 14<sup>2</sup> - 10(7) - 20(14) + 105 = 0</li> </ul> |        |
|     | so (7,14) is a circumference point                                                                                                                                                                                                                                                                                   | 4      |
|     | (c) • Centre of smaller circle is (7,14) and radius is $\sqrt{5}$                                                                                                                                                                                                                                                    |        |
|     | • • equation of smaller circle is $(x-7)^2 + (y-14)^2 = 5$                                                                                                                                                                                                                                                           |        |
|     | For $(x-7)^2 + (y-14)^2 = (\sqrt{5})^2$ candidates lose one mark                                                                                                                                                                                                                                                     | 3      |
|     |                                                                                                                                                                                                                                                                                                                      |        |



| 8  | • $Sin2x = 2sinxcosx$ • $2sinxcosx - 2cos^2x = 0$                                                                                                                                                                                                                                                                                                                               |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | • $2 \cos(\sin x - \cos x) = 0$                                                                                                                                                                                                                                                                                                                                                 | 5 |
|    | • •                                                                                                                                                                                                                                                                                                                                                                             |   |
|    | cosx = 0 sinx = cosx                                                                                                                                                                                                                                                                                                                                                            |   |
|    | π/2, 3π/2 π/4, 5π/4                                                                                                                                                                                                                                                                                                                                                             |   |
|    | Answers in degrees lose 1 mark                                                                                                                                                                                                                                                                                                                                                  |   |
| 9  | (a) $\bullet \int_{1}^{4} \frac{1}{x^{2}} dx$ $\bullet \int_{1}^{4} x^{-2} dx$<br>$\bullet \left[\frac{x^{-1}}{-1}\right]_{1}^{4} = \left[-\frac{1}{x}\right]_{1}^{4}$ $\bullet \left(-\frac{1}{4}\right) - (-1)$ $\bullet \text{ Area} = \frac{3}{4}$<br>(b) $\bullet \int_{1}^{k} \frac{1}{x^{2}} dx = \frac{3}{8}$ $\bullet \left[-\frac{1}{x}\right]_{1}^{k} = \frac{3}{8}$ | 5 |
|    | • $\left(-\frac{1}{k}\right) - \left(-1\right) = \frac{3}{8}$ • $k = \frac{8}{5}$                                                                                                                                                                                                                                                                                               | 4 |
| 10 | (a) •9=10 $e^{-3k} \rightarrow \frac{9}{10} = e^{-3k}$                                                                                                                                                                                                                                                                                                                          |   |
|    | • $\log_{e}\left(\frac{9}{10}\right) = -3k$ • $k = \frac{\log_{e}\left(\frac{9}{10}\right)}{-3} = 0.035$                                                                                                                                                                                                                                                                        | 3 |
|    | (b) • 5=10 $e^{-0.035t} \rightarrow \frac{1}{2} = e^{-0.035t}$ • $t = \frac{\log_{e}\left(\frac{1}{2}\right)}{-0.035} = 19.8$                                                                                                                                                                                                                                                   | 2 |
| 11 | (a) • Area of shed $3 = xy$ , $y = 3/x$                                                                                                                                                                                                                                                                                                                                         |   |
|    | • Area of Lawn $A(x) = 3(4 + y) + 4x$                                                                                                                                                                                                                                                                                                                                           |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                 | 3 |
|    | • Area of Lawn A(x) = 3(4 + 3/x) + 4x = 12 + 9/x + 4x = 12 + 4x + $\frac{9}{x}$                                                                                                                                                                                                                                                                                                 |   |
|    | (b) •Know to differentiate and equate to zero<br>• $4 - \frac{9}{x^2} = 0$                                                                                                                                                                                                                                                                                                      |   |
|    | • $4x^2 - 9 = 0$ , $(2x+3)(2x-3) = 0$ , $x = \pm 3/2$                                                                                                                                                                                                                                                                                                                           |   |
|    | <ul> <li>Nature table or use of the second derivative</li> </ul>                                                                                                                                                                                                                                                                                                                | 5 |
|    | <ul> <li>A width or 1.5 metres minimises the area of the lawn</li> </ul>                                                                                                                                                                                                                                                                                                        |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                 |   |
|    | END OF PAPER 2                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |                                                                                                                                                                                                                                                                                                                                                                                 |   |

Log equations - exp half life - graphs of logs

Completing the square - inverse and composite functions - transformations of funct

Exact values - double angle - addition formula - wave function solving trig equations

Vector components - angle between vectors <mark>- perpendicular vectors</mark> - unit vectors - distributive law

Synthetic division - simultaneous equations - find the equation from the graph - using the discriminant

differentiation of composite functions - - rate of change - <u>stationary points</u> equations of tangents - inc/dec functions - optimiation

Integrate a trig function - definite integrals - <u>area between curves with difficult</u> integral - differential equations

Parallel and perpendicular lines - <mark>m = tanx</mark> - <mark>medians, altitudes</mark> and <u>perpendicular</u> <u>bisectors</u>

<u>General equation of a circle</u> - tangents to circles - basic geom

Recurrence relations - problem solving with limits

New Prelim for Easter School